In the same trip to Poland in October, Lerner also visited the Institute of Nuclear Physics of the Polish Academy of Sciences in Krakow. There he discussed with Dr. Marek Scholz and other researchers the Institute’s plans to initiate their own research into hydrogen-boron fusion using a plasma focus device. This is only the second such effort, after LPPFusion’s own work. Dr. Scholz explained that they currently plan such experiments to begin as early as 2018, perhaps six months after the planned initiation of hydrogen-boron experiments at LPPFusion’s FF-1 facility. The Krakow experiments will use the PF-24 device, which is very similar in many ways to FF-1, having a similarly-sized capacitor bank and similarly small electrodes. While PF-24 is at the moment running with only about half of the current now produced by FF-1, it is capable at full power of producing mega-ampere currents.

Pf-24

Figure 4. Institute of Nuclear Physics PF-24 plasma focus device in Krakow. The blue boxes are 24 capacitors, providing current to the electrodes inside the steel vacuum chamber (center).

Given the common goals of hydrogen-boron fusion with a plasma focus device and the similarity in the devices, Lerner and Dr. Scholz agreed to remain in close contact. Already the collaboration has provided benefits to both efforts. From the Krakow team, LPPFusion learned of better methods of shielding our instruments from electromagnetic noise, while Lerner was able to point to ways that PF-24 could improve the functioning of their switching system. “We expect both teams will be able to learn a lot more from each other in the coming months,” said Lerner. “We look forward to a growing collaboration with this and other labs in achieving aneutronic fusion.”

This news piece is part of the October, 2016 report. To download the report click here.
Scroll to Top