At the beginning of March, good shots (those without pre-firing and with pinches) were a bit under 50% of the shots we fired. Since mid-month, we have increased that to 90% good shots. The two time-of-flight neutron detectors have produced more evidence that we are already duplicating the high ion energies achieved with higher currents in the Texas experiments. In our best shots, ion energies were measured in the range of 40-60 keV (the equivalent of 0.4-0.6 billion degrees K). The electron beam carried about 0.5 kJ of energy and the plasmoid held about 1 kJ of energy, nearly half that stored in the magnetic field of the device. So, this is evidence that a substantial part of the total energy available is being concentrated in the plasmoids and transferred to the beams.
We found that the control shots (with the magnetic coil turned off) were increasingly producing more neutrons (up to about 10 times) as the control shots in the beginning of our testing. It turns out the steel flanges that attach the vacuum chamber to the inner lower bus plate and the bus plate itself were both becoming permanently magnetized. This provides additional (though unintended) evidence that the predicted angular momentum effect is working. In the future, we may find it necessary to replace the flanges and bus plate with those made from non-magnetic alloys, but that will have to wait for now.
On March 18, Lerner gave an invited presentation on the DPF to an audience of physicists and engineers at Princeton Plasma Physics Laboratory, the nation’s largest fusion lab. The Princeton physicists responded with interest and some friendly questions. The atmosphere was one of collaboration, not competition.
Finally, we received enough investment money to carry us through the end of summer, with additional funding pledged. This means we are almost halfway to our goal of raising $900K in this capital drive.